
MATHEMATICS OF COMPUTATION 
VOLUME 47, NUMBER 176 
OCTOBER 1986, PAGES 703-711 

The Primality of R1031 

By H. C. Williams* and Harvey Dubner 
Dedicated to D. H. Lehmer on the occasion of his 80th birthday 

Abstract. A description is given of a technique for proving R1031 (= (101031 - 1)/9) a prime. 

1. Introduction. The repunit numbers, numbers of the form Rn = (1On - 1)/9, 
have been of great interest to mathematical recreationists for many years. One rather 
peculiar feature of these numbers is the apparent scarcity of primes among them. 
Indeed, before the writing of this paper only R2, R19, R23, and R317 had been 
identified as primes. In [16] a search for further primes of this form for all n < 2000 
turned up only one further candidate for primality, R1031. Unfortunately, the 
methods of primality testing available at the time were not adequate to prove R1031 
a prime. Dubner has since conducted an extended search for repunit primes and, as 
a result of this work, it is now known that the only possible repunit primes Rn for all 
n < 10000 are the 5 numbers mentioned above. This made the resolution of the 
question of the primality of R1031 of greater interest. 

Since the publication of [16] a great deal of research has been devoted to the 
problem of primality testing. The very important results of Adelman, Pomerance, 
and Rumely [1] have been modified by Cohen and Lenstra [5] and have resulted in 
the tests described by Cohen and Lenstra [6]. It is now possible to test the primality 
of numbers of up to 200 digits in about 10 minutes of computer time. However, it 
has been estimated that the application of these rapid, general purpose tests to the 
problem of determining the primality of a number as large as R1031 might require 
as many as several hundred hours of computer time. 

Since the methods [5], [6] are somewhat complicated to program and would also 
be rather time-consuming to run on R1031, even on a very fast machine, we decided 
to make use of the earlier methods of Williams and Judd [13], [14]. The main 
difficulty in using these techniques is that they are not general purpose methods and 
require, in order to test a given N for primality, that we first obtain a sufficient 
number of prime factors from among those which divide, N + 1, N2 + 1, N2 + N 
+ 1. Also, running the final tests can still be very time-consuming. In this paper we 
describe how we overcame these difficulties and were able to prove R1031 a prime. 

Received December 9, 1985. 
1980 Mathematics Subject Classification. Primary 1OA25. 
*Research supported by NSERC of Canada grant A7649. 

(?1986 American Mathematical Society 

0025-5718/86 $1.00 + $.25 per page 

703 



704 H. C. WILLIAMS AND HARVEY DUBNER 

2. The Strategy. Let N = R1031; we have 

10103 - 1 10515 + 1 10515 - 1 
N-1 = 1(10103 + 1)* - 1O1o3+1101o3 l 

Now (10103 - 1)/9 is completely factored in [16] and the complete factorization of 
10103 + 1 can be obtained from Brillhart et al. [4] and results of Atkin and Rickert 
mentioned at the end of Williams [12]. Also (10515 + 1)/(10103 + 1) has 7211 9091 
* 497491 569836171 2013681931 as a factor and T = (10515 - 1)/(10103 - 1) has 
41 271 5905014721 as a factor (see [16]). With this information we have a 
completely factored part F of N - 1, where F is approximately 2.73 x 10 251. While 
this represents a very large factor of N - 1, it does not furnish us with sufficient 
information for developing a proof that N is a prime. 

Dubner and Dubner [7] have developed a special purpose microcomputer that 
performs multiple-precision operations very quickly; in fact, this very small machine 
is about as fast as IBM's latest mainframe. This device was used to search for more 
factors of N - 1. By utilizing the techniques of Brent and Pollard [2], the factor 
326345481191 of T was found and an additional factor 2702394989404991 of T was 
found by using the p - 1 method described by Pollard [9]. These factors were 
determined by the Dubner machine in a matter of a few minutes. With this 
information we have N- 1 = F1C,, where F1, the completely factored part of 
N - 1, exceeds 2.40 x 10278. 

Now the following theorem is well known and true for an arbitrary N (see, for 
example, Brillhart, Lehmer, and Selfridge [3]). 

THEOREM. If for each distinct prime qi which divides F1, there exists an integer a, 
such that 

(2.1) gcd(a($N-)/1 - 1, N ) = 1 

and 

(2.2) a1 N 1 (mod N), 

then any prime divisor of N must have the form mF + 1. E 

If N is a prime, the probability that (2.1) does not hold is about 1/qi. Thus, we 
elected to try a single a value such that (a/N) = -1 (Jacobi symbol). This means 
that (2.1) must hold if qi = 2 and N is a prime. We determine 

b aCl (mod N). 

Let Q, = F1/qi, where qi is a prime divisor of F. For each distinct qi, we then 
evaluate 

ci - bQ (mod N). 

We see that (2.1) and (2.2) hold if 

gcd(ci - 1, N) = 1 and c -1 (mod N). 

Of course, if gcd(c, - 1, N) # 1 for some qi, we would be compelled to try a 
different value of a for that particular qi. 

By using only a single value of a (= 7) and our particular N value (R1031), we 
were able to run these final tests (for the factors of F1) and verify in about 18 
minutes of AMDAHL 5850 CPU time that if p is a prime factor of N, then p 1 



THE PRIMALITY OF R1031 705 

(mod F1). All programming for the AMDAHL was done in FORTRAN with special 
assembler language subroutines used for the multiprecise operations of addition, 
subtraction, multiplication, and division. 

It follows from this that if N is the product of three nontrivial factors fl, f2, f3, 
then 

N = (m1Fl + 1)(m2F2 + 1)(m3F3 + 1), 

wherefi = m,F1 + 1 and m, > 0 (i = 1,2,3,). Hence, 

m1 + m2 + m3 C1 (mod F1). 

Let L be the remainder on dividing C1 by F1. Since 

ml + m2 + m3 > L, 

we must have m, > L/3 for some i E {1, 2,3). Thus, if N is the product of three 
nontrivial factors, we must have N > LF13/3. In fact, we found by evaluating L that 

LF13/3 > N; 

hence N must be the product of at most two prime factors. 
Lenstra [8] has shown that if we know that a factor f of N must have the form 

f = ms + r, where s > N173, then a fast algorithm, given in [8], can be used to find 
f. Unfortunately, our value for F1 is much less than N1/3; thus, we decided to search 
for factors of N + 1, N2 + 1, and N2 + N + 1. By using trial division, the p - 1 
method, and Pollard's [10] Monte Carlo method, we found 

N + 1 = 23 3 78869803 C2= F2C2, 

N2 + 1 = 2- 101 2184509* 134089273- 1124225381 C4= 2F4C4, 

N2 + N + 1 = 7- 13 193 54223873993 C3 =F3C3, 

N2 - N + 1 = 3 37 661 4236022699- C6 = 3F6C6. 

Also, C1, C2, C3, C4, C6, are composite integers. These new factors were also found 
in a matter of a few minutes on the Dubner machine. We need 

K' = (FyF2F3F4F6)/2 > N1/3; 

however, K' - 7.47 x 10341 and N1/3 - 2.23 x 10343; hence, we require one more 
factor. 

After using the Dubner machine to search each of C, C2, C3, C4, C6 for another 
factor (spending, on the average about 30 hours per C value), we still had found no 
additional factor. As C6 was the last number to be tested and was still in the 
machine, we simply allowed the machine to keep running on it. After using the 
p - 1 method for 110 hours, the factor 

7g= 2211993420324463 

of C6 was discovered. Replacing, F6 by 7TF6, we now have 

K= (F1F2F3F4F6)/2 > N173. 

Let S be any factor of K such that S > N1l3 and let 

Fi= gcd(S,F1) (i= 1,2,3,4,6). 



706 H. C. WILLIAMS AND HARVEY DUBNER 

Once the final tests for the primes dividing S given in [3], [13], and [14] have been 
executed (see Section 3 for a full description of these), we know that since N can be 
the product of at most two primes, we must, if N is composite, have one of 6 
possibilities for one of these primes p < N. (See Williams and Holte [15].) 

By using the Chinese Remainder Theorem, we first solve the system 
x-1 (modFl), ~~~~~~~~~~~~~~~~~~~~~~~~~x- -I (modF2 

for y. We then solve each of the 6 systems 
(i) x y (mod F,F2), x N (mod F4F3F6) for rl; 

(ii) x y (mod F,F2), x -N (mod F4), x N (mod F3F6) for r2; 
(iii) x y (mod F,F2), x N (mod F4), x 1 (mod F3), x -1 (mod F6) for 

r3; 
(iv) x y (modF,F2), x -N (modF4), x 1 (modF3), x -1 (mod F6) 

for r4; 
(v) x-y (modF,F2), x N(modF4), x - -N-i (modF3), x -N+1 

(mod F6) for r5; 
(vi)x x-y(mod F,F,), x~ ---N(mod F4), x---N-1 (mod F3), xN-N ? 1 

(mod F6) for r6. 
If N is composite, it must have a prime factor p such that p ri (mod S) where 

iE {1, 2, 3,4, 5,6) and S > N'73. 
We can now use Lenstra's algorithm to attempt to find p. The only difficulty 

which arises in using this algorithm lies in the determination of whether or not there 
are integer zeros of a quadratic polynomial X2 - AX + B when A and B are large. 
But, since we usually do not expect to have such integral zeros, the best way to test 
for this is to find a collection of small primes t,, t2, t3, . . ., tm such that ti + S (in this 
case) and determine for each ti its set of (ti - 1)/2 quadratic nonresidues (mod ti). 
We need, then, only to test whether or not A = A2 - 4B to a quadratic nonre- 
sidue of t, (mod ti). Of course, if A is a quadratic residue for each ti, then Newton's 
method can be employed to determine whether or not A is truly a perfect square. 
We found that with m = 15 this method worked very well. 

We implemented Lenstra's algorithm on the AMDAHL 5850 and tested it 
thoroughly on a large number of multiprecise composite numbers for which we knew 
the form of the factors. This algorithm works surprisingly rapidly and when used on 
the problem of finding a factor of R1031 required only 18 CPU seconds for each of 
the 6 (S, ri) pairs. 

3. The Final Tests. It remains to describe the final tests for the factors of S. We 
have already performed these tests for the factors of F,; hence, we need only 
perform them for factors of F2, F3, F4, F6. As was done in [3], we give the final tests 
for the factors of F2 in terms of Lucas Functions. 

Let P, Q be integers such that gcd(P, Q) = 1. Define the Lucas Functions by 

Vn(p, Q) = a + /en, U (p, Q) = (an - /3n)/( 13) 

where a, 13 are the zeros of x2 - Px + Q. Put A = p2 - 4Q. 
Final Tests for the Factors of F2. Let D be a fixed integer such that the Jacobi 

symbol (D/N) = - 1. For each distinct prime qi such that qi jF2, find a pair P, Q 
such that D = p2 - 4Q, 

gcd N, U, NIV,/7(P, Q)) = 1, 



THE PRIMALITY OF R1031 707 

and 
NIUN+l(P,Q). 

In [3] it is shown how Um(P, Q) (mod N) can be computed rapidly, even when m 
is large. However, when N is very large, these final tests as stated here may consume 
more computer time than necessary. We describe below another means by which 
these tests can be conducted. 

We first note that from the definition of the Lucas Functions we can show that** 

(3.1) V2m = Vm - 2Qm, 

(3.2) V4n+2 = V2nV2n+2 - 2 

(3.3) Vm - AUm = 4Qm, 

(3.4) Vm(Vn,Qn) = Vnm(P'Q) 

If we define Wn V2nQ n (mod N), we have 

(3.5) W p2Q-1-2 (modN). 

Also, from (3.1), (3.2), and (3.3) we get 

(3.6) W2n- W2-2 (mod N), 
(3.7) W2n+l WnWn+l- W1 (modN), 

(3.8) A (U2nQ -) W2 --4 (modN). 

Since WO = 2, we see from (3.5) and (3.6) that the value of Wn depends only on that 
of W1; hence, we may regard Wn to be a function of W1 and n only. When we do 
this, we can use (3.4) to deduce 

(3.9) Wn (Wm)- Wn m(Wj) (mod N). 
Let 9-m denote the pair { Wm, Wm+i), where each entry of Y-m is reduced modulo 

N. Let m = (bo, bl, b2,..., b,)2 be the binary representation of m, and define 
fi(x) = X 2 2, f2(x, y) = xy - W1. If we also define co = bo = 1, c+1 = 2c; + 

bj]+, i = S, then =Y3,rm. By (3.6) and (3.7) we can easily deduce that if 

g={x, y}, then 

- f {f1(x), f2(x, y)} when b,+1 = 0, 

{f2(x,y), f1(y)} when bi+1 = 1. 

Thus, if we are given Wl, we now have a fast O(log m) algorithm for computing 
Wm(Wi) V2m(P, Q)Q-m (mod N), when W1 is given by (3.5). 

We now give a different formulation of the final tests for the factors of F2. As 
before, we let D be a fixed integer such that the Jacobi symbol (D/N) = -1. We 
find P, Q such that p2 - 4Q D (mod N) and we determine W1 by (3.5). Since Q 
is usually small, the computation of Q1 (mod N) can be done quickly. Compute 

(3.10) WA(W1) (modW) (A = (N + 1)/2F2) 

by using the algorithm given above. For each qjiF2, put Q, = F2jqi, 

(3.11) Xi -WQ ( W1* ) (mod N). 

Note that Xi W(N+1)/2q,(W1) (mod N) by (3.9). Determine that 

(3.12) gcd(Xi2 - 4, N) = 1, 

* *When there is no doubt as to the arguments P, Q of i? and L41, we will omit them. 



708 H. C. WILLIAMS AND HARVEY DUBNER 

and for 
(3.13) Y, Wq1 (Xi) (mod N) 

( Wq (Xi) W(N+ 1)/2( W1) (mod N)), that 

(3.14) N iY-4. 

Since gcd(DQ, N) = 1, we see by (3.8) that this formulation of the final tests is 
correct. If (3.12) should not be true for some prime qi, then the tests would have to 
be repeated with a different P, Q pair, but we would only test those qi's for which 
(3.12) failed to be true. Since the probability that (3.12) will not hold when N is a 
prime is about l/qi, this event is not very likely. 

In fact, with F2 = F2/8, D = 21, P = 5, Q = 1, we found that N = R1031 
passed these final tests in about 4 CPU minutes of AMDAHL time. 

The ideas developed here for the final tests for the factors of F2 can be extended 
to the relevant final tests for the factors of F4, F3, F6 given in [13] and [14]. For the 
generalized Lehmer Functions defined in [11] we now define 

W j2Q.f n(mod N), 

grn{ tWO,m Wl,m, WOm+j Wl,m+?) when k = 2 (used when dealing with the 
factors of F4), and Ym- = {WOm, WI,m, W2,M WO,m+? Wi,m+I, W2,m+1} when k = 3 
(used when dealing with the factors of F3 or F6). As before, the entries of ,-m are 
reduced modulo N; also, for a given m, we put Si = c . 

If we define 

g1(x, y) = X2 p2y2 - 2, g2(x, y) = 2xy + p1y2, 

g3(X, y, z, w) = xz - P2yw -W01 

g4(X, Y, z, W) = yz + xw + Plyw -Wl , 

= (y + x)(z + w) - xz +(PI - 1)yw -W , 

then when k = 1, we have W0O = 2, Wi,0 = 1, W0,1 +P2Q1 - 2, W1, P1 
(mod N) and 

WO,2n 9g(WO,n W,n), W1,2n = 
92(WO'n Wl,n) 

O0,2n+l 1 9g3(WO,n Wl,n, Ov,n+?1 W1,n+?D 

W1,2n+ 1 94 (WOn I W1n I, WOn "+19 Wi' n+1) (mod N)- 

These forms can be easily verified by using the methods of [11] and the simple 
results (analogous to (3.1) and (3.2)) that 

V2n(p, Q) = vn(p, Q) - 2Qn, 

V4n+2(P Q) = V2n+1(P, Q)v2n(p, Q) _ Q2 v2(p, Q)- 
Thus, if , = {x, y, z,w}, then 

/ {g1(x,y), g2(x,y), g3(x,y,z,9w), g4(x,y,z,w)} if b,+1 = 0, 

1 { g3(x, y, z,w), g4(x, y, z,w), gl(z,w), g2(z, w)} if bj+I = 1. 
Also, if we write 

OVn = WO,n(WOV,1 WJ 11 P19 P2) W1 n = WI1, n (Wo,1 W'11, P1I P2) 

then 

Wo "I 7- Wo, m(WO, n, Wl, n, P1 P2) Wl,mn WI, mm(WO, n, Wl, n P1 P2) (modN). 



THE PRIMALITY OF R1031 709 

By noting that the Urn in final test a (the final tests for the factors of F4) of [131 is 
the same as Vm ,m we can reformulate test a here in an analogous manner to our 
reformulation of the final tests for the factors of F2 given in [3]. We use the previous 
value of D and select a fixed C value as described in [13]. We then select H, K and 
compute P1, P2, Q by the formulas given in [13]. We compute Wu, W1 1 (mod N). 
The test has the same structure of that for the factors of F2, but we replace (3.10) by 

W0 1-W0OA(W0,1, W1l1, Pl, P2) (mod N) (A = (N2 + 1)/2F4), 

WA(W0l,Wll,Pl,P2) (mod N), 
(3.11) by 

XO, iWO Q (WO*1, Wl*, P1, P2) (mod N), 

Xi, iW1 Q, (WO*', W1*l, P1, P2) (modN), 

(3.12) by 

gcd( X1i, N) = 1 (if this does not occur, we must change the 
(H, K) pair for qi), 

(3.13) by 

y,ij W1,qj(Xo0i, X1,1, P1, P2) (mod N), 

and (3.14) by 

Here, of course, qi | F4 and Qi = F4/qj. 
Using this reformulation of test a with F4 = F4 and D = 21, C = 29, H= 1, 

K = 0, we found that N passed these final tests in about 16 minutes of AMDAHL 
CPU time. 

If, when k = 3, we further define 

hl(x, y, z) = x2 + 2P3yz + P1P2Z2 - 2, 

h2(x, y, z) = 2xy - 2P2yz + (pP3 - )z 

h (yZ) =y2 + 2zx + 2P,yz + (p2 _-p2)z2, 

h4(x,y,z,u,v,w) = xu + P3(y + z)(v + w) +(P1 - P2P3)zw 
-P3yv - W, 

h,(xy, z, u, v,w) = (y + x)(u + v) - xu +(P2 - 1)yv 

-P2(Z + Y)(V + W) +(P3-P1P2 + P2)zw- W1,1 

h6(XI Y, Z, U, V, w) = (z + x)(u + w) - xu - (P1 - l)yv 

+(p2 - P2 - P1-_ 1)ZW + Pl(y + z)(v + w) -W 

then we can show that for i = 0,1, 2, we have 

Wi 2n-hi+1(W0nW, W 2,n) 

i+4(WO nAW n W2n,WO n+1l W1,n+1'W2,n+I) (modN). 
Also, W0l - 2, W1 1-0, W21 QQ (mod N), and 

Wi,mn- Wi,m( Won, W1,n, W2 , P1, P2, P3) (mod N). 
Thus, we can reformulate the final tests (1) and (3) of [14] in a manner analogous to 
our other reformulations. 



710 H. C. WILLIAMS AND HARVEY DUBNER 

When we implemented these new revisions of tests (1) and (3), using a = 21, 
b =7, h = 1, ki =l 1, =0, G = 1 (for test (1)) and G = 7 (for test (3)) to 
determine P1, P2, P3, Q as discussed in [14], we required 39 minutes of AMDAHL 
CPU time to run each test. Here F3 = F3/7, F6 = F6. With F1 = F1, S = 
F1F2F3F4F6 > N1/3, we then ran Lenstra's test as described in Section 2. As we 
found no nontrivial factor of N, we now know that N must be a prime. This was 
done in a total of 18 + 4 + 16 + 39 + 39 + 6(18/60) - 118 minutes of AMDAHL 
time. 

It might be argued here that even though only 2 hours of AMDAHL time was 
needed to prove R1031 a prime, we still needed in excess of 200 hours of time on the 
Dubner machine to find the final prime factor v which we needed in order to begin 
our primality proof. In fact, because of the (unexpected) speed of Lenstra's algo- 
rithm, we could have proved R1031 a prime without this final factor. Had we used 
slightly different parameters (select Q in the final tests for the factors of F2 such that 
(Q/N) = - 1; select a, b, for tests (1) and (3) such that P in [14] is not 7) in some 
of our final tests, we could have put F1 = F1, F2 = F2, F3 = F3, F4 = F4, F6 =F6/ 
and have S = K', where K' is defined in Section 2. 

Had these tests been performed, we would know that if N is composite, it must 
have a prime factor p such that p ri (mod S), i E { 1, 2, 3,4, 5, 6}. But for this 
value of S we have 

N 1/ S < 31 
and 31 + S. Thus, if we use Lenstra's algorithm on the 6 x 30 pairs (S', r1') 
(i= 1,2,3,4,5,6), where S' = 31S, ri' ri (modS), and ri' 1,2,3,...,30 
(mod 31), we could have demonstrated the primality of N in an additional 29 X 6 x 
18 CPU seconds or 53 extra CPU minutes. Nevertheless, we prefer the proof given 
here as it is more succinct. We do, however, wish to recommend highly the 
implementation of Lenstra's algorithm in any general or special purpose primality 
testing routine where its use is relevant. It is very easy to program, executes rapidly, 
and saves a great deal of time that might otherwise have to be spent on computa- 
tionally more expensive final tests. 

4. Acknowledgment. The authors gratefully acknowledge the enthusiasm and 
interest displayed in this project by Samuel Yates. 

Department of Computer Science 
University of Manitoba 
Winnipeg, Manitoba, Canada R3T 2N2 

Dubner Computer Systems, Inc. 
158 Linwood Plaza 
Fort Lee, New Jersey 07024 

1. L. M. ADELMAN, C. POMERANCE & R. S. RUMELY, "On distinguishing prime numbers from 
composite numbers," Ann. of Math. (2), v. 117, 1983, pp. 173-206. 

2. R. P. BRENT & J. H. POLLARD, "Factorization of the eighth Fermat number," Math. Comp., v. 36, 
1981, pp. 627-630. 

3. J. BRILLHART, D. H. LEHMER & J. L. SELFRIDGE, "New primality criteria and factorizations of 
2' + 1," Math. Comp., v. 29, 1975, pp. 620-647. 

4. J. BRILLHART, D. H. LEHMER, JOHN SELFRIDGE, B. TUCKERMAN & S. S. WAGSTAFF, JR., Factoriza- 
tionis of b" + 1, b = 2,3,5,6,7,10,11,12 Up to High Powers, Contemp. Math., vol. 22, Amer. M-ath. Soc., 
Providence, R. I., 1983. 



THE PRIMALITY OF R1031 711 

5. H. COHEN & W. H. LENSTRA, JR., "Primality testing and Jacobi sums," Math. Comp., v. 42, 1984, 
pp.297-330. 

6. H. COHEN & A. K. LENSTRA, "Implementation of a new primality test," Math. Comp. (To appear.) 
7. H. DUBNER & R. DUBNER, "The development of a powerful, low-cost computer for number theory 

application," J. Recreational Math. (To appear.) 
8. H. W. LENSTRA, JR., "Divisors in residue classes," Math. Comp., v. 42,1984, pp. 331-340. 
9. J. M. POLLARD, "Theorems on factorization and primality testing," Proc. Cambridge Philos. Soc., v. 

76, 1974, pp. 521-528. 
10. J. M. POLLARD, "A Monte Carlo method for factorization," BIT, v. 15, 1975, pp. 331-334. 
11. H. C. WILLIAMS, "A generalization of Lehmer's functions," Acta Arith., v. 29, 1976, pp. 315-341. 
12. H. C. WILLIAMS, "Factoring on a computer," Math. Intelligencer, v. 6, 1984, pp. 29-36. 
13. H. C. WILLIAMS & S. JUDD, "Determination of the primality of N by using factors of N2 + 1," 

Math. Comp., v. 30,1976, pp. 157-1'72. 
14. H. C. WILLIAMS & S. JUDD, "'Some algorithms for prime testing using generalized Lehmer 

functions," Math. Comp., v. 30,1976, pp. 867-886. 
15. H. C. WILLIAMS & R. HOLTE, "Some observations on primality testing," Math. Comp., v. 32, 1978, 

pp.905-917. 
16. H. C. WILLIAMS & E. SEAH, "Some primes of the form (a' - 1)/(a - 1)," Math. Comp., v. 33, 

1979, pp.1337-1342. 


